

Characterization of sumoylated Tup1 protein profile

- (a) Tup1 K611R mutation results in Tup1 hypersumoylation. HA immunoprecipitations of SM-treated WT, K229R, K270R and K611R mutants were analyzed by HA and yeast SUMO (Smt3) immunoblots.
- (b) Tup1 is polysumoylated. HA immunoprecipitations of untreated (control), or SM-treated WT, smt3-R11,15,19 or smt3 allR mutants were analyzed by HA and yeast SUMO (Smt3) immunoblots.
- (c) Time-course analysis of Tup1 immunoprecipitation after SM treatment. HA immunoprecipitations of SM-treated WT at the indicated time points were analyzed by HA and yeast SUMO (Smt3) immunoblots.

Characterization of sumoylated Tup1 ChIP profile

(a) Tup1-WT and Tup1-MT(K229,270R) are found mostly on *ARG1* promoter after SM treatment. Tup1-HA ChIP analysis of Tup1-WT or Tup1-MT (K229,270R) on indicated *ARG1* gene positions at 0 and 20 mins after SM treatment and gene diagrams for *ARG1* indicating gene length, approximate position of transcriptional start site (bent arrow), and regions amplified by indicated ChIP primers.

(b-c) Tup1 sumoylation enhances its own association with *HIS4* promoter, but not with *SUC2* promoter after SM treatment. Tup1-HA ChIP analysis of Tup1-WT or Tup1-MT (K229,270R) on (b) *HIS4* and (c) *SUC2* promoters at indicated times after SM induction. Data are represented as mean +/- SD of three independent experiments. *P*-values (refer to Materials and Methods for calculation) are indicated in parentheses above paired bars where relevant.

Tup1 protein stability is affected by its sumoylation, but SUMO-targeted ubiquitin ligases Slx5 and Rad18 do not regulate Tup1 protein level

(a) Tup1-HA immunoblot analysis of extract from yeast cells transformed with Tup1-HA WT or Tup1-HA MT (K229,270R). In order to make cells permeable to MG132, yeast strains were grown at 30°C in a synthetic medium (0.17% yeast nitrogenous base without ammonium sulfate) supplemented with 0.1% proline, appropriate amino acids, and 2% glucose. The overnight culture was reinoculated into 50 ml fresh media with 0.003% SDS at OD of 0.5. The cells were grown for an additional 3 h at 30°C. The transformed cells were either treated with DMSO or MG132. GAPDH was used as a loading control.

(b) Tup1-HA immunoblot analysis of extract from yeast cells (wild-type, *slx5*∆ or *rad18*∆ strains) transformed with Tup1-WT HA protein level. The cells were grown in at 30°C in a synthetic medium (0.17% yeast nitrogenous base without ammonium sulfate) supplemented with 5 g l⁻¹, appropriate amino acids, and 2% glucose. GAPDH was used as a loading control.

Hypersumoylated Tup1 results in repression of ARG1 mRNA gene expression

Steady-state RNA levels were determined by RT-PCR for Tup1 target gene, *ARG1* and control housekeeping gene, *ACT1* at the indicated time after exposure to SM. Analysis was performed in strains expressing Tup1-WT, or Tup1-K611R as indicated. Values were normalized to *ARG1* RNA level in strain expressing Gcn4-WT and Tup1-WT at 0 min. Data are represented as mean +/- SD of three independent experiments.

Treatment of SM does not result in a global increase in sumoylation

- (a) Total sumoylated proteins in three different WT (YPH499, BY4741 and W303a strains) before and after SM treatment were determined by Western blot analysis. GAPDH was used a loading control.
- (b) SM treatment does not result in an increase in Tfg1 sumoylation level. HA immunoprecipitations of control (untreated) and SM-treated Tfg1-HA tagged wild-type strains were analyzed by HA and yeast SUMO (Smt3) immunoblots.

Uncropped Western blot scans of Figures 1a, 1b, 4a, 4b and 4c

Supplementary Table 1 Yeast strains used in this study

Strain	Genotype	Source
The followin	ng strains are derived from the YPH499 strain (MATa ura3-52 lys2-801 ^{amber} ade2-101 ^{ochre} i	trp1-∆63 his3-
Δ200 leu2-Δ	I)	
CHNM1	TUP1::TUP1-6HA–K. lactis TRP1	This study
CHNM2	CYC8::CYC8-6HA–K. lactis TRP1	This study
CHNM3	GAL11::GAL11-6HA–K. lactis TRP1	This study
CHNM4	GCN5::GCN5-6HA–K. lactis TRP1	This study
CHNM5	HHT1::HHT1-6HA–K. lactis TRP1	This study
CHNM6	CTI6::CTI6-6HA–K. lactis TRP1	This study
CHNM7	TUP1::TUP1-6HA-K270R–K. lactis TRP1	This study
CHNM8	TUP1::TUP1-6HA-K611R–K. lactis TRP1	This study
CHNM9	TUP1::TUP1-6HA–K. lactis TRP1 gcn4Δ::kanMX [pGCN4-6HA/CEN URA3]	This study
CHNM10	TUP1::TUP1-6HA–K. lactis TRP1 gcn4Δ::kanMX [pGCN4-6HA-K50,58R/CEN	This study
	URA3]	
CHNM11	TUP1::TUP1-6HA-K270R–K. lactis TRP1 gcn4Δ::kanMX [pGCN4-6HA/CEN URA3]	This study
CHNM12	TUP1::TUP1-6HA-K270R–K. lactis TRP1 gcn4Δ::kanMX [pGCN4-6HA-	This study
	K50,58R/CEN URA3]	
CHNM13	tup1Δ::kanMX [pTUP1-6HA/CEN URA3]	This study
CHNM14	tup1Δ::kanMX [pTUP1-6HA-K229R/CEN URA3]	This study
CHNM15	tup1Δ::kanMX [pTUP1-6HA-K270R/CEN URA3]	This study
CHNM16	tup1Δ::kanMX [pTUP1-6HA-K229,270R/CEN URA3]	This study
CHNM17	TUP1::TUP1-6HA–K. lactis TRP1 GAL11::GAL11-FLAG kanMX	This study
CHNM18	TUP1::TUP1-6HA-K270R–K. lactis TRP1 GAL11::GAL11-FLAG kanMX	This study
CHNM19	TUP1::TUP1-6HA–K. lactis TRP1 GCN5::GCN5-FLAG kanMX	This study
CHNM20	TUP1::TUP1-6HA-K270R-K. lactis TRP1 GCN5::GCN5-FLAG kanMX	This study
CHNM21	TUP1::TUP1-6HA–K. lactis TRP1 HHT1::HHT1-FLAG kanMX	This study

CHM22	TUP1::TUP1-6HA-K270R-K. lactis TRP1 HHT1::HHT1-FLAG kanMX	This study		
The following	g strains are derived from the strains used in Bylebyl et al. 2003.			
CHNM23	MATa trp1-Δ1 ura3-52 his3-Δ200 leu2-3,112 lys2-801[pTUP1-HA/CEN URA3]	This study		
CHNM24	MATa smt3-R11,15,19::TRP1[pTUP1-HA/CEN URA3]	This study		
CHNM25	MATa smt3-R38,40,41::TRP1[pTUP1-HA/CEN URA3]	This study		
The following	g strains are derived from W303a (MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 h	is3-11,15)		
CHNM26	TFG1::TFG1-6HA–K. lactis TRP1	This study		
The following strains are derived from BY4741 (MATa his3 Δ 0 leu2 Δ 0 met15 Δ 0 ura3 Δ 0)				
YAA018	TUP1:TUP1-3HA-HIS3MX6	This study		
YAA019	slx5∆::kanMX TUP1:TUP1-3HA-HIS3MX6	This study		
YAA020	rad18∆::kanMX TUP1:TUP1-3HA-HIS3MX6	This study		

Supplementary Table 2 Primers sequences used in this study

Primer name	Primer sequence	Note
Tup1F-HA-Trp	GATTGTAAAGCAAGGATTTGGAAGTATAAAAAAATAGC	HA-tagging
•	GCCAAATCGTACGCTGCAGGTCGAC	of Tup1
Tup1R-HA-Trp	GTTTAGTTAGTTACATTTGTAAAGTGTTCCTTTTGTGTTC	
1	TGTTCATCGATGAATTCGAGCTCG	
Cyc8F-HA-Trp	GAAAATGTAGTAAGGCAAGTGGAAGAAGATGAAAACT	HA-tagging
, ,	ACGACGACCGTACGCTGCAGGTCGAC	of Cyc8
Cyc8R-HA-Trp	TCGTTGATTATAAATTAGTAGATTAATTTTTTGAATGCA	1
, 1	AACTTTATCGATGAATTCGAGCTCG	
Gal11F-HA-Trp	GAACAATTCAATGTATGGGATTGGAATAATTGGACAAG	HA-tagging
•	TGCTACTCGTACGCTGCAGGTCGAC	of Gal11
Gal11R-HA-Trp	ACGAAGTAACTTCAAAAGTATCAAAAGTATGGAAACTT	- -
омительный по	CAAATGTATCGATGAATTCGAGCTCG	
Gcn5F-HA-Trp	AATAATAAAGTAAAAGAAATACCTGAATATTCTCACCT	HA-tagging
	TATTGATCGTACGCTGCAGGTCGAC	of Gcn5
Gcn5R-HA-Trp	TTTCTTCGAAAGGAATAGTAGCGGAAAAGCTTCTTC	01 00110
oenere in i iip	TACGCAATCGATGAATTCGAGCTCG	
Hht1F-HA-Trp	CAAAAGAAGGATATCAAGTTGGCTAGAAGATTAAGAG	HA-tagging
111111 1111 11p	GTGAAAGATCACGTACGCTGCAGGTCGAC	of Hht1
Hht1R-HA-Trp	TATTGTGTTTTTGTTCGTTTTTTACTAAAACTGATGACA	01111111
1111111111111	ATCAACAAAATCGATGAATTCGAGCTCG	
Cti6F-HA-Trp	CTACTATGGGAGAAAAAATATTCAAATAACACTAATGC	HA-tagging
cuor ini iip	CATTCAACGTACGCTGCAGGTCGAC	of Cti6
Cti6R-HA-Trp	ATTACAGTTATACTTTGGTTGAGAATAATATTGCAGTGT	01 0110
cuon in i rip	TTTGCGATCGATGAATTCGAGCTCG	
Tup1-K229R-F-	GAGACCACTACTTTACCCTCTGTCAGGGCACCTGAATC	Creation of
Int	TACGTTGAAAGAA	integrative
Tup1-K270R-F-	GCAACTGAAACTGAAATCAAACCTA G GGAGGAAGACG	Tup1
Int	CCACCCGGCTAGT	mutations
Tup1-K611R-F-	TGGAATTTGCAGAATGCAAACAACA <u>G</u> GAGCGATTCGA	1
Int	AAACTCCAAATTCC	
Tup1-R-Int	GAATAGTTAGTTACATTTGTAAAGTGTTCCTTTT	=
Tup T Tt III	GTGTTCTGTTC	
Tup1-K229-LF	CCCTCTGTCA <u>G</u> GGCACCTGAA TCTACGTTGAAAGAAA	Creation of
1 wp 1 1122 / 21	CTGAACCG	Tup1-K229R
Tup1-K229-SF	TCTACGTTGAAAGAAACTGAACCG	mutation
Tup1-K229-LR	TTCAGGTGCCCTGACAGAGGGTAAAGTAGTGGTCTCT	using SLIM
14p1 1122	TTAGAAGTAGGAG	8
Tup1-K229-SR	TAAAGTAGTGGTCTCTTTAGAAGTAGGAG	
Tup1-K270-LF	ATCAAACCTAGGGAGGAAGACGCCACCCCGGCTAGT	Creation of
rupi iiz/o zi	TTG	Tup1-K270R
Tup1-K270-SF	GCCACCCGGCTAGTTTG	mutation
Tup1-K270-LR	GTCTTCCTCCCTAGGTTTGATTTCAGTTTCAGTTGCGG	using SLIM
TupT-IX270-LIX	TGGTAGT	doing beau
Tup1-K270-SR	TTCAGTTCAGTTGCGGTGGTAGT	-
Tup1-K611-LF	AACAGGAGCGATTCGAAAACTCCAAATTCCGGCACTT	Creation of
Tupi IXVII-Li	GTGAAG	Tup1-K611R
Tup1-K611-SF	CCAAATTCCGGCACTTGTGAAG	mutation
Tup1-K611-SF Tup1-K611-LR	AGTTTTCGAATCGCTCCTGTTGTTTGCATTCTGCAAAT	using SLIM
rupi-Kuii-LK		asing SLIIVI
Tup1 V611 CD	TCCAGA CTTTCCATTCTCCAAATTCCACA	1
Tup1-K611-SR	GTTTGCATTCTGCAAATTCCAGA	Elas 4c · · · ·
pFA6a-Gal11F	GAACAATTCAATGTATGGGATTGGAATAATTGGACAAG	Flag-tagging

	TGCTACTGGGGGAGGCGGGGGTGGA	of Gal11
pFA6a-Gal11R	ACGAAGTAACTTCAAAAGTATCAAAAGTATGGAAACTT	
	CAAATGTGAATTCGAGCTCGTTTAAAC	
pFA6a-Gcn5F	AATAATAAAGTAAAAGAAATACCTGAATATTCTCACCT	Flag-tagging
	TATTGATGGGGGAGGCGGGGGTGGA	of Gcn5
pFA6a-Gcn5R	TTTCTTCTTCGAAAGGAATAGTAGCGGAAAAGCTTCTTC	
	TACGCGAATTCGAGCTCGTTTAAAC	
pFA6a-Hht1F	AAGAAGGATATCAAGTTGGCTAGAAGATTAAGAGGTG	Flag-tagging
	AAAGATCAGGGGGGGGGGGGGGGGA	of Hht1
pFA6a-Hht1R	TGTGTTTTTGTTCGTTTTTTACTAAAACTGATGACAATC	
	AACAAAGAATTCGAGCTCGTTTAAAC	
Cpa2F	CCACTGTCTTCCTGCGGC	ChIP analysis
Cpa2R	GATGCTTAAACTTAAATAGCGC	
Arg1A-F	GATAGTGTAATCTGAGCAGTTG	
Arg1A-R	GTATCTAAACCACCAGAATAAGC	
Arg1B-F	GTAATGATCAAATCAGATTCG	
Arg1B-R	GGTCAAATCTTGTGGTTGGTCCG	
Arg1C-F	GACTTTAGACAAAGAAGTCCG	
Arg1C-R	GTATCGGTAGGTAAGAAACCG	
Arg1D-F	CATCGCCTCAAGATAGATAACG	
Arg1D-R	GAGGACTTAATGGTGCAGTGC	
Tel-VI-F	GCTGAGTTTAACGGTGATTATTAGG	
Tel-VI-R	CCAGTCCTCATTTCCATCAATAG	
Arg1F+454	AGATTTGCTGGCAGAAAGGA	Quantitative
Arg1R+609	CTTTGGTGGGGTGGTATCTG	RT-PCR
Cpa2F+102	TGGATCAGGAGGCTCTCTA	
Cpa2R+280	ATTCTGGTGTAACGGGCAAG	
25s-F	CAAGTGCACCGTTGCTAGC	
25s-R	GCCTCTAAGTCAGAATCCATGC	